Mars Ascent Vehicle

www.nasa.gov

Presentation to Powell County High School Introduction

Stefanie Justice Technical Assistant and Flight Software Lead, NASA MSFC April 14, 2022

MSR Mission Objective:

Retrieve Mars samples and return to Earth.

- Mars 2020 rover collects Mars samples and leaves tubes in place.
- 2. Earth Retrieval Orbiter (ERO) sent to Mars orbit.
- Mars Lander Platform (MLP) with Mars Ascent Vehicle (MAV) sent to Mars.
- 4. Fetch rover tasked with retrieving sample tubes on Mars surface.
- 5. MAV is loaded with the Orbiting Sample (OS) containing the sample tubes. MAV carries the OS to Mars orbit.
- 6. ERO rendezvous with OS, retrieves OS, and returns OS to Earth.
- 7. Earth Entry Vehicle returns OS to Earth's surface.

- 1. Receive sample tubes inside OS on Mars surface.
- 2. Launch OS to predefined Mars orbit.
- 3. Release OS in Mars orbit.

4 2nd Stage Burn to Burnout and Spin-Down

- 2nd stage SRM 2 burn to burnout
- Post-2nd burnout transients wait
- De-spin motor burn

- Separate 1st stage
- · Hi-speed spin motor burn
- Enable beacon (earliest opportunity)

- · Depart sensible atmosphere
- · Orient vehicle for MPA fairing separation
- Separate MPA fairing
- · Reorient vehicle back to flight vector

- VECTOR launch
- 1st stage SRM 1 burn
- Max Q
- SRM 1 burnout

- MAV 2nd stage-commanded OS release
- Enable beacon (baseline)

*Conceptual elements shown. Not to scale.

- MSFC's initial assessments considered:
 - Hybrid propulsion system low GLOM, high performance in Martian environment (low TRL)
 - Solid propulsion system energy management mitigates orbital dispersion (high TRL)
 - Liquid second stage challenges meeting power and mass constraints
- Solid Propulsion Concept Enabled by:
 - Selection of Jezero Crater as landing site
 - Surface operations timeframe for MLV
 - Environmental constraints -40 C
- Preliminary Architecture Assessment confirmed Solid Propulsion Design
 - Solid propulsion design met cost, schedule and technical performance requirements

FSW Design - Layered Architecture

NASA

- FSW is designed using the cFS layered architecture.
- Each layer communicates with layers that are above and below it.

cFS Layered Architecture

MAV FSW Layered Architecture

- https://www.youtube.com/watch?v=IAj9tXZyqS8
- https://mars.nasa.gov/people/?category=all
- https://www.nasa.gov/centers/marshall/home/index.html

- https://www.nasa.gov/careers
- https://www.nasa.gov/careers/pathways